Senior Data Scientist
Descrizione dell'offerta
Siamo alla ricerca di un AI Engineer con comprovata esperienza in Machine Learning, Deep Learning, AI Generativa e sui Large Language Models (LLMs). La figura sarà impegnata su progetti innovativi inerenti la comprensione del linguaggio naturale fino alla generazione di contenuti e all'automazione avanzata.
Le principali attività saranno:
- Progettazione, sviluppo e implementazione di algoritmi e modelli di Machine Learning e Deep Learning.
- Sviluppo e implementazione di architetture Agentic AI (Agenti Autonomi) basate su LLM per l'automazione di flussi di lavoro complessi e il problem solving.
- Lavorare con Large Language Models (LLMs) per applicazioni quali la generazione di testo, la sintesi, la traduzione e la comprensione del linguaggio naturale.
- Costruzione e ottimizzazione di architetture di AI generativa per risolvere problemi aziendali complessi.
- Sperimentazioni e ricerche per valutare nuove tecniche e tecnologie AI.
- Collaborazione con altri team interni per l'integrazione delle soluzioni AI nei prodotti e servizi aziendali.
- Aggiornamento e miglioramento dei modelli AI esistenti.
Qualifiche/competenze richieste:
- Laurea Magistrale (o equivalente) in Informatica, Ingegneria Informatica, Intelligenza Artificiale, Data Science, Matematica o Fisica
- Machine Learning e Deep Learning, con esperienza nello sviluppo e nella messa in produzione di modelli.
- Elaborazione del Linguaggio Naturale (NLP)
- Almeno un framework Deep Learning (es. PyTorch, TensorFlow, o JAX).
- Esperienza pratica con Large Language Models (LLMs), incluse tecniche di pre-addestramento, fine-tuning (SFT) e ottimizzazione (es. Quantizzazione, Pruning).
- Agentic AI e MLOps:
- Framework di Agentic AI (es. LangChain, AutoGen, RAG architectures) per la creazione di sistemi multi-agente e l'integrazione di strumenti esterni (tool calling).
- MLOps (es. Docker, Kubernetes, MLflow) per la gestione del ciclo di vita dei modelli e la garanzia di prestazioni e scalabilità.
- Programmazione in Python avanzata e familiarità con librerie di data science (es. NumPy, Pandas, Scikit-learn).
- Nozioni base di piattaforme cloud (AWS, Azure o GCP, IBM Cloud) con l'uso di acceleratori hardware (GPU/TPU).
- AI Generativa: Capacità di costruire e ottimizzare architetture di AI generativa.